초록 |
In recent years, an increasing number of automotive parts are being developed using Carbon Fiber Reinforced Plastics(CFRP) to improve fuel efficiency. Optimal design in various aspects must be developed in order to apply CFRP that have many design variables to actual parts. This study proposed an optimal design method for CFRP prepreg laminates for automobile roof models considering both structural stiffness and formability. First, the various fiber orientations of CFRP prepreg laminate plies were investigated based on DOE, and fiber orientations that gave the best structural stiffness were selected. Next, a draping analysis was conducted to investigate the fiber orientations of the CFRP prepreg laminate plies that could yield the least forming defects. Through this procedure, conditions for CFRP blanks that satisfy both structural stiffness and formability properties were determined. In addition, the blank holder and blank shape used in the draping process have been optimized to improve formability and reduce material costs. The present optimization method that considers both structural stiffness and formability could be utilized in the development of CFRP material-based parts. |