| 제목 | AN INTENTION-AWARE AND ONLINE DRIVING STYLE ESTIMATION BASED PERSONALIZED AUTONOMOUS DRIVING STRATEGY |
|---|---|
| 분야 | Body and Safety |
| 언어 | English |
| 저자 | Bohua Sun(Jilin University), Weiwen Deng(Jilin University), Jian Wu(Jilin University), Yaxin Li(Jilin University), Jinsong Wang(GM R&D Center) |
| Key Words | Autonomous Vehicle, Driving style, Online Identification, Intention-aware, MOMDP |
| 초록 | Autonomous vehicles are aiming at improving driving safety and comfort. They need to perform socially accepted behaviors in complex urban scenarios including human-driven vehicles with uncertain intentions. What’s more, understanding human drivers’ driving styles that make the systems more human-like or personalized is the key to improve the system performance, in particular, the acceptance and adaption of autonomous vehicles to human passengers. In this study, a personalized intention-aware autonomous driving strategy is proposed. An online driving style identification is proposed based on double-level Multi-dimension Gaussian Hidden Markov Process (MGHMP) with arbitration mechanism and evaluated in field test. A Mixed Observable Markov Decision Process (MOMDP) is built to model the general personalized intention-aware framework. A human-like policy generation mechanism is used to generate the possible candidates to overcome the difficulty in solving MOMDP. The index of surrounding vehicles’ intention of the upper-level MGHMP is updated during each prediction time step. The weighting factors of the reward function are configured with the identification result of lower-level MGHMP. The personalized intention-aware autonomous driving strategy is evaluated on a Real-Time Intelligent Simulation Platform. Results show that the proposed strategy can achieve the online identification accuracy above 95 % and for personalized autonomous driving in scenarios mixed with human-driven vehicles with uncertain intentions. |
| 미리보기 | 다운로드 |
| 원문(PDF) | 다운로드 |