Skip Navigation
Skip to contents

한국자동차공학회

Login

29권 10호 951-958 2021 [한국자동차공학회 논문집 ]

제목 영상의 연속성 기반 Key 개념 도입을 통해 인식 성능을 향상시킨 딥러닝 네트워크 개선 연구
분야 전기ㆍ전자ㆍ통신
언어 Korean
저자 이원우(국민대학교), 최윤석(국민대학교), 유진우(국민대학교)
Key Words Deep leraning(딥러닝), Average precision(평균 정밀도), Recall(재현율), Bounding box(경계 상자), Loss function(손실 함수), Convolution(합성곱)
초록 In this paper, we propose a novel deep learning algorithm to improve the detector’s performance in sequential images. By adopting a sliding window method that uses three consecutive images, the keys are generated by comparing the positions of the detected boxes for each of the images by using Generalized-IoU. Addition and Merge tasks were applied separately through comparison by using Complete-IoU after key generation. They have the effect of correcting the unexpected or incorrectly predicted bounding boxes. As a result, performance was improved in terms of average precision.
원문(PDF) 다운로드 Journal Site

사단법인 한국자동차공학회

  • TEL : (02) 564-3971 (사무국 업무시간 : 평일 오전 8시~)
  • FAX : (02) 564-3973
  • E-mail : ksae@ksae.org

Copyright © by The Korean Society of Automotive Engineers. All rights reserved.