Skip Navigation
Skip to contents

한국자동차공학회

Login

29권 12호 1123-1132 2021 [한국자동차공학회 논문집 ]

제목 다채널 라이다의 주행 및 가상 데이터셋에 대한 딥러닝 기반 차량 검출 알고리즘의 학습 및 성능 비교 연구
분야 전기ㆍ전자ㆍ통신
언어 Korean
저자 김윤범(아주대학교), 이태현(아주대학교), 송봉섭(아주대학교)
Key Words Vehicle detection(차량 검출), Deep learning(심층 학습), 3D LiDAR(3차원 라이다), Fine tuning(세부 튜닝), Sensor simulator(센서 시뮬레이터), Virtual data(가상 데이터)
초록 In this paper, the training method used in a lidar-based, object detection algorithm is applied to different types of datasets, i.e., experimental driving data and virtual simulation data. Then, their performances are compared with respect to different key performance indexes(KPIs). Among many object detection methods introduced in the literature, three distinguished networks that consider the representation of lidar cloud points are chosen to compare fine tuning and performance. While most open datasets reflect only safe driving situations, it is necessary to develop and validate the object detection algorithm in dangerous and critical situations. With the generation of a virtual simulation dataset, including unsafe scenarios, the performance of the object detection algorithms can improve when the fine-tuning method is applied, along with the virtual dataset.
원문(PDF) 다운로드 Journal Site

사단법인 한국자동차공학회

  • TEL : (02) 564-3971 (사무국 업무시간 : 평일 오전 8시~)
  • FAX : (02) 564-3973
  • E-mail : ksae@ksae.org

Copyright © by The Korean Society of Automotive Engineers. All rights reserved.