Skip Navigation
Skip to contents

한국자동차공학회

Login

24권 3호 787-797 2023 [IJAT]

제목 IMPROVED 3D SEMANTIC SEGMENTATION MODEL BASED ON RGB IMAGE AND LIDAR POINT CLOUD FUSION FOR AUTOMANTIC DRIVING
분야 Electrical and Electronics
언어 English
저자 Jiahao Du(Shanghai University of Engineering Science), Xiaoci Huang(Shanghai University of Engineering Science), Mengyang Xing(Shanghai University of Engineering Science), Tao Zhang(Shanghai University of Engineering Science)
Key Words Point cloud semantic segmentation, Multi-sensor fusion, Perspective projection, Dual-flow network
초록 LiDAR point cloud semantic segmentation algorithm is crucial to the environmental understanding of unmanned vehicles. At this stage, in autonomous vehicles, effectively integrating the complementary information of LiDAR and camera has become the focus of research. In this work, a network framework (called PI-Seg) for LiDAR point clouds semantic segmentation by fusing appearance features of RGB images is proposed. In this paper, the perspective projection module is introduced to align and synchronize point clouds with images to reduce appearance information loss. And an efficient and concise dual-flow feature extraction network is designed, a fusion module based on a continuous convolution structure is used for feature fusion, which effectively reduces the amount of parameters and runtime performance, and more suitable for autonomous driving scenarios. Finally, the fused features are added to the LiDAR point cloud features as the final output features, and the point cloud category label prediction is realized through the MLP network. The experimental results demonstrate that PI-Seg has a 5.3% higher mIoU score than SalsaNext, which is also a projection-based method, and still has a 1.4% performance improvement compared with the latest Cylinder3D algorithm, and in quantitative analyses the mAP value also has the best performance, showing that PI-Seg is better than other existing methods.
미리보기 다운로드
원문(PDF) 다운로드

사단법인 한국자동차공학회

  • TEL : (02) 564-3971 (사무국 업무시간 : 평일 오전 8시~)
  • FAX : (02) 564-3973
  • E-mail : ksae@ksae.org

Copyright © by The Korean Society of Automotive Engineers. All rights reserved.