제목 |
UNTRIPPED AND TRIPPED ROLLOVERS WITH A NEURAL NETWORK
|
분야 |
Body and Safety |
언어 |
English |
저자 |
Gridsada Phanomchoeng(Chulalongkorn University), Kailerk Treetipsounthorn(Chulalongkorn University), Sunhapos Chantranuwathana(Chulalongkorn University), Lunchakorn Wuttisittikulkij (Chulalongkorn University) |
Key Words |
Rollover index, Tripped rollover, Untripped rollover, Feedforward neural network, Recurrent neural network, LSTM, gated recurrent unit (GRU), Tanh |
초록 |
To improve rollover prevention and rollover warning systems, indicators for detecting rollover risks are extremely important. Vehicle rollover accidents occur in one of two ways: tripped and untripped rollovers. For detecting tripped rollovers, the traditional rollover index is ineffective; most precise rollover indicators depend on dynamic models that must identify all the parameters for computations. In this study, we focused on exploring a new index for detecting tripped and untripped rollovers using a neural network (NN). Four types of NNs, i.e., FNN, Tanh, long short-term memory, and gated recurrent unit (GRU), were examined to develop models for estimating rollover indices. The results demonstrated that the GRU and large Tanh network are the most suitable NNs for untripped and tripped rollover prediction, respectively. Moreover, the untripped rollover prediction model having a small GRU network could precisely anticipate the trend of the untripped rollover indicators for up to 0.2 s in advance. Moreover, the created tripped rollover anticipation model with a large Tanh network could precisely forecast the trend of the tripped rollover index up to 0.5 s in advance. Based on these results, rollover prediction in future can be advantageous for rollover prevention and warning systems.
|
미리보기 |
다운로드
|
원문(PDF) |
다운로드
|