Skip Navigation
Skip to contents

한국자동차공학회

Login

32권 7호 619-624 2024 [한국자동차공학회 논문집 ]

제목 CNN-ViT 통합 모듈을 이용한 Two-Branch 백본 기반 깊이 완성 연구
분야 전기ㆍ전자ㆍ통신
언어 Korean
저자 김석영(전남대학교), 김찬수(전남대학교)
Key Words Depth completion(깊이 완성), Deep learning(딥러닝), Multi-modal learning(멀티모달 러닝), Vision transformer(비전 트랜스포머), Residual connection(잔차 연결)
초록 Depth estimation on surrounding environments is one of the key components in autonomous driving applications, such as object detection and SLAM. To predict the depth of scene accurately, depth completion combines information from a sparse LiDAR depth map and a camera image. In this paper, we proposed a two branch architecture based on CNN and a Vision transformer to fuse different modalities from heterogeneous sensors. To fuse two modalities, the proposed model consists of two branch modules: a coarse-branch and a fine branch. Using the sparse depth map and an image, the coarse-branch module generates a coarse depth map that focused on color information. The fine-branch module estimates a final dense depth map focused on depth information through the color-dominant depth map and the sparse depth map. Experiments on the NYUv2 dataset demonstrated that the proposed method outperformed previous models.
원문(PDF) 다운로드 Journal Site

사단법인 한국자동차공학회

  • TEL : (02) 564-3971 (사무국 업무시간 : 평일 오전 8시~)
  • FAX : (02) 564-3973
  • E-mail : ksae@ksae.org

Copyright © by The Korean Society of Automotive Engineers. All rights reserved.